Alternating high and low climate variability: The context of natural selection and speciation in Plio-Pleistocene hominin evolution.
نویسندگان
چکیده
Interaction of orbital insolation cycles defines a predictive model of alternating phases of high- and low-climate variability for tropical East Africa over the past 5 million years. This model, which is described in terms of climate variability stages, implies repeated increases in landscape/resource instability and intervening periods of stability in East Africa. It predicts eight prolonged (>192 kyr) eras of intensified habitat instability (high variability stages) in which hominin evolutionary innovations are likely to have occurred, potentially by variability selection. The prediction that repeated shifts toward high climate variability affected paleoenvironments and evolution is tested in three ways. In the first test, deep-sea records of northeast African terrigenous dust flux (Sites 721/722) and eastern Mediterranean sapropels (Site 967A) show increased and decreased variability in concert with predicted shifts in climate variability. These regional measurements of climate dynamics are complemented by stratigraphic observations in five basins with lengthy stratigraphic and paleoenvironmental records: the mid-Pleistocene Olorgesailie Basin, the Plio-Pleistocene Turkana and Olduvai Basins, and the Pliocene Tugen Hills sequence and Hadar Basin--all of which show that highly variable landscapes inhabited by hominin populations were indeed concentrated in predicted stages of prolonged high climate variability. Second, stringent null-model tests demonstrate a significant association of currently known first and last appearance datums (FADs and LADs) of the major hominin lineages, suites of technological behaviors, and dispersal events with the predicted intervals of prolonged high climate variability. Palynological study in the Nihewan Basin, China, provides a third test, which shows the occupation of highly diverse habitats in eastern Asia, consistent with the predicted increase in adaptability in dispersing Oldowan hominins. Integration of fossil, archeological, sedimentary, and paleolandscape evidence illustrates the potential influence of prolonged high variability on the origin and spread of critical adaptations and lineages in the evolution of Homo. The growing body of data concerning environmental dynamics supports the idea that the evolution of adaptability in response to climate and overall ecological instability represents a unifying theme in hominin evolutionary history.
منابع مشابه
High- and low-latitude forcing of Plio-Pleistocene East African climate and human evolution.
The late Cenozoic climate of East Africa is punctuated by episodes of short, alternating periods of extreme wetness and aridity, superimposed on a regime of subdued moisture availability exhibiting a long-term drying trend. These periods of extreme climate variability appear to correlate with maxima in the 400-thousand-year (kyr) component of the Earth's eccentricity cycle. Prior to 2.7 Ma the ...
متن کاملEarly Human Speciation, Brain Expansion and Dispersal Influenced by African Climate Pulses
Early human evolution is characterised by pulsed speciation and dispersal events that cannot be explained fully by global or continental paleoclimate records. We propose that the collated record of ephemeral East African Rift System (EARS) lakes could be a proxy for the regional paleoclimate conditions experienced by early hominins. Here we show that the presence of these lakes is associated wi...
متن کاملHigh-resolution vegetation and climate change associated with Pliocene Australopithecus afarensis.
Plio-Pleistocene global climate change is believed to have had an important influence on local habitats and early human evolution in Africa. Responses of hominin lineages to climate change have been difficult to test, however, because this procedure requires well documented evidence for connections between global climate and hominin environment. Through high-resolution pollen data from Hadar, E...
متن کاملPapio Cranium from the Hominin-Bearing Site of Malapa: Implications for the Evolution of Modern Baboon Cranial Morphology and South African Plio-Pleistocene Biochronology
A new partial cranium (UW 88-886) of the Plio-Pleistocene baboon Papio angusticeps from Malapa is identified, described and discussed. UW 88-886 represents the only non-hominin primate yet recovered from Malapa and is important both in the context of baboon evolution as well as South African hominin site biochronology. The new specimen may represent the first appearance of modern baboon anatomy...
متن کاملConnecting local environmental sequences to global climate patterns: evidence from the hominin-bearing Hadar Formation, Ethiopia.
Central to the debate surrounding global climate change and Plio-Pleistocene hominin evolution is the degree to which orbital-scale climate patterns influence low-latitude continental ecosystems and how these influences can be distinguished from regional volcano-tectonic events and local environmental effects. The Pliocene Hadar Formation of Ethiopia preserves a record of hominin paleoenvironme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of human evolution
دوره 87 شماره
صفحات -
تاریخ انتشار 2015